We introduce a new theoretical framework for deriving lower bounds on data movement in bilinear algorithms. Bilinear algorithms are a general representation of fast algorithms for bilinear functions, which include computation of matrix multiplication, convolution, and symmetric tensor contractions. A bilinear algorithm is described by three matrices. Our communication lower bounds are based on quantifying the minimal matrix ranks of matching subsets of columns of these matrices. This infrastructure yields new communication lower bounds for symmetric tensor contraction algorithms, which provide qualitative new insights. Tensor symmetry (invariance under permutation of modes) is common to many applications of tensor computations (e.g., tensor representation of hypergraphs, analysis of high order moments in data, as well as tensors modelling interactions of electrons in computational chemistry). Tensor symmetry enables reduction in representation size as well as arithmetic cost of contractions by factors that scale with the number of equivalent permutations. However, we derive lower bounds showing that these arithmetic cost and memory reductions can necessitate increases in data movement by factors that scale with the size of the tensors.
翻译:我们引入了一个新的理论框架, 用于计算双线算法数据流动的较低界限。 双线算法是双线函数快速算法的一般表示, 包括计算矩阵倍增、 变进和对称感应收缩。 3个矩阵描述了双线算法。 我们的通信较低界限以量化这些矩阵各列相匹配子集的最小矩阵等级为基础。 这种基础设施为提供定性新洞察的对称强收缩算法提供了新的通信较低界限。 线性对称法( 模式变换中的变异) 常见于数计算的许多应用中( 例如, 超光学的变异、 数据中高顺序时间的分析, 以及计算化学中电子数组的数组建模相互作用 ) 。 电量对称使代表规模减少, 缩缩缩的算成本由与等同的定调值数量相比的各种因素计算。 然而, 我们从较低的界限中得出, 这些算术成本和内存减少可能因数因素的大小而增加数据移动。