We establish theoretical results about the low frequency contamination (i.e., long memory effects) induced by general nonstationarity for estimates such as the sample autocovariance and the periodogram, and deduce consequences for heteroskedasticity and autocorrelation robust (HAR) inference. We present explicit expressions for the asymptotic bias of these estimates. We distinguish cases where this contamination only occurs as a small-sample problem and cases where the contamination continues to hold asymptotically. We show theoretically that nonparametric smoothing over time is robust to low frequency contamination. Our results provide new insights on the debate between consistent versus inconsistent long-run variance (LRV) estimation. Existing LRV estimators tend to be in inflated when the data are nonstationary. This results in HAR tests that can be undersized and exhibit dramatic power losses. Our theory indicates that long bandwidths or fixed-b HAR tests suffer more from low frequency contamination relative to HAR tests based on HAC estimators, whereas recently introduced double kernel HAC estimators do not super from this problem. Finally, we present second-order Edgeworth expansions under nonstationarity about the distribution of HAC and DK-HAC estimators and about the corresponding t-test in the linear regression model.


翻译:我们对这些估计的低频率污染(即长期内存效应)的理论结果进行了确定,这种污染是由诸如抽样自动变异和周期图等一般非常态估计引起的,对低频率污染(即长期内存效应)的理论结果进行了确定,并推断出对恒度和高温关系(HAR)推论的影响。我们对这些估计的无症状偏差给出了明确的表达。我们区分了这种污染仅作为小抽样问题发生的案例和污染继续保持被动状态的案例。我们从理论上表明,在时间上非参数性平滑对于低频率污染是强大的。我们的结果提供了对一致与不一致的长期差异(LRV)估计之间辩论的新见解。现有的LRV估计值在数据非常态时往往会膨胀。这导致HAR测试可能规模过小并显示出巨大的能量损失。我们的理论表明,长带宽或固定的HAR测试比基于HAC估计器的HAR测试的低频率污染更严重,而最近引入了双向内空的HAC估计值长期差异(LRLV)估计值(LRLV)之间的辩论,而不是对HStistal-ADirstal-ADirmatial 的分布进行。最后我们提出了关于Hstal-stal-stal-stan上关于Hstal-HA的对准的对准的对准度分布的对准的对准的对准的对准的扩展。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员