Algorithms produce a growing portion of decisions and recommendations both in policy and business. Such algorithmic decisions are natural experiments (conditionally quasi-randomly assigned instruments) since the algorithms make decisions based only on observable input variables. We use this observation to develop a treatment-effect estimator for a class of stochastic and deterministic algorithms. Our estimator is shown to be consistent and asymptotically normal for well-defined causal effects. A key special case of our estimator is a high-dimensional regression discontinuity design. The proofs use tools from differential geometry and geometric measure theory, which may be of independent interest. The practical performance of our method is first demonstrated in a high-dimensional simulation resembling decision-making by machine learning algorithms. Our estimator has smaller mean squared errors compared to alternative estimators. We finally apply our estimator to evaluate the effect of Coronavirus Aid, Relief, and Economic Security (CARES) Act, where more than \$10 billion worth of relief funding is allocated to hospitals via an algorithmic rule. The estimates suggest that the relief funding has little effects on COVID-19-related hospital activity levels. Naive OLS and IV estimates exhibit substantial selection bias.
翻译:这些算法决定是自然实验(有条件的准随机分配工具),因为算法只根据可观测的投入变量作出决定。我们利用这一观测为一组随机和确定性算法开发一个治疗效应估计仪。我们的测算仪显示,对明确界定的因果关系效果而言,其测算仪是一致的,也是正常的。我们的测算仪的一个重要特例是高维回归性不连续设计。证据使用了不同几何和几何计量理论的工具,这可能具有独立的兴趣。我们的方法的实际性能首先表现在通过机器学习算法来模拟决策的高度模拟中。我们的测算仪与其它测算仪相比,其平均的误差较小。我们最后运用我们的测算仪来评价科罗纳病毒援助、救济和经济安全(CARES)的影响,在那里,价值超过100亿美元的救济资金被分配到医院,通过一种亚历克里亚规则进行微的测算。我们的方法的实际性表现首先表现在一种高维度模拟的模拟模拟中,通过机器学习算法规则来模拟决策决策。我们的测算结果显示,与纳氏-19号的医院的测算法性评估活动显示,估计活动显示,降为抗力-IV的测算结果。