Component-centric distributed graph processing platforms that use a bulk synchronous parallel (BSP) programming model have gained traction. These address the short-comings of Big Data abstractions/platforms like MapReduce/Hadoop for large-scale graph processing. However, there is limited literature on foundational aspects of the behavior of these component-centric abstractions for different graphs, graph partitioning, and graph algorithms. Here, we propose a analytical approach based on a meta-graph sketch to examine the characteristics of component-centric graph programming models at a coarse granularity. In particular, we apply this sketch to subgraph- and block-centric abstractions, and draw a comparison with vertex-centric models like Google's Pregel. First, we explore the impact of various graph partitioning techniques on the meta-graph, and next consider the impact of the meta-graph on graph algorithms. This decouples the unwieldy large graph and their partitioning specific artifacts from their algorithmic analysis. We use 5 spatial and powerlaw graphs as exemplars, four different partitioning strategies, and PageRank and Breadth First Search as canonical algorithms. These analysis over the meta-graphs provide a reliable measure of the expected number of supersteps, and the communication and computational complexity of the algorithms for various graphs, and the relative merits of subgraph-centric models over vertex-centric ones.


翻译:以组件为中心的分布式图表处理平台使用散装同步平行(BSP)编程模型,获得了牵引力。这些模型处理大数据抽象/平台的短处,如用于大比例图形处理的 MapReduce/Hadoop 等大数据抽象/平台的短处。然而,关于不同图表、图分区和图表算法这些以组件为中心的抽象行为的基本方面,文献有限。在这里,我们提出一种基于元图草图的分析方法,以在粗略颗粒度上检查以组件为中心的图形编程模型的特性。特别是,我们将这一草图应用于子图和以块为中心的抽象抽象抽象,并与Google的Pregel等以垂直为中心的模型进行对比。首先,我们探索了各种图形分割技术对元图、图分割法和图表算法分析的基本方面的影响。我们用5个空间和权力法图形作为缩略图,4个不同的偏移和以块中心中心为中心,并比较了Google-rial centrial comal 战略的相对核心,以及Page-ralal-deal-alalalalalal-al-deal-al-al-altraal-alaltravelphyalalal maxal maxalalalal maxalalalalalalalalalalalal 和pal mas mas maxalalal masal mas mas 和pal mas maxalsalsalsalsalsalsalsalsalsalsalsal 提供可靠的计算和palsalsalsalsalsalsalsal masal 和palal 和palsalsalsalsalsalsalalalal 的精确算法的精确算的精确数分析,我们用5 和页和算和页的精确算法的精确算法的精确算法的精确算法的精确算和页的精确算的精确算和页数的精确算法和页数分析。我们算的精确和页和页和页和页和页和页的精确算法的精确算法的计算和页的计算和页的计算的计算和图的精确

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
58+阅读 · 2020年4月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员