Mild cognitive impairment (MCI) conversion prediction, i.e., identifying MCI patients of high risks converting to Alzheimer's disease (AD), is essential for preventing or slowing the progression of AD. Although previous studies have shown that the fusion of multi-modal data can effectively improve the prediction accuracy, their applications are largely restricted by the limited availability or high cost of multi-modal data. Building an effective prediction model using only magnetic resonance imaging (MRI) remains a challenging research topic. In this work, we propose a multi-modal multi-instance distillation scheme, which aims to distill the knowledge learned from multi-modal data to an MRI-based network for MCI conversion prediction. In contrast to existing distillation algorithms, the proposed multi-instance probabilities demonstrate a superior capability of representing the complicated atrophy distributions, and can guide the MRI-based network to better explore the input MRI. To our best knowledge, this is the first study that attempts to improve an MRI-based prediction model by leveraging extra supervision distilled from multi-modal information. Experiments demonstrate the advantage of our framework, suggesting its potentials in the data-limited clinical settings.
翻译:虽然以往的研究显示,多模式数据的融合可以有效提高预测的准确性,但其应用在很大程度上受到多模式数据的有限或高成本的限制。 建立一个仅使用磁共振成像的有效预测模型仍然是一个具有挑战性的研究课题。 在这项工作中,我们提议了一个多模式多级多级蒸馏计划,目的是将多模式数据学中的知识提炼到一个基于多模式数据的MRI网络,用于MCI转换预测。与现有的蒸馏算法相比,拟议的多模式概率表明代表复杂营养分布的更高能力,并能够指导以磁共振成像(MRI)为基础的网络更好地探索投入MRI。根据我们的最佳知识,这是试图通过利用从多模式信息中提取的外部监督来改进基于MRI的预测模型的首次研究。实验展示了我们框架在多模式信息中的潜在的临床优势。