Short-fiber-reinforced composites (SFRC) are high-performance engineering materials for lightweight structural applications in the automotive and electronics industries. Typically, SFRC structures are manufactured by injection molding, which induces heterogeneous microstructures, and the resulting nonlinear anisotropic behaviors are challenging to predict by conventional micromechanical analyses. In this work, we present a machine learning-based multiscale method by integrating injection molding-induced microstructures, material homogenization, and Deep Material Network (DMN) in the finite element simulation software LS-DYNA for structural analysis of SFRC. DMN is a physics-embedded machine learning model that learns the microscale material morphologies hidden in representative volume elements of composites through offline training. By coupling DMN with finite elements, we have developed a highly accurate and efficient data-driven approach, which predicts nonlinear behaviors of composite materials and structures at a computational speed orders-of-magnitude faster than the high-fidelity direct numerical simulation. To model industrial-scale SFRC products, transfer learning is utilized to generate a unified DMN database, which effectively captures the effects of injection molding-induced fiber orientations and volume fractions on the overall composite properties. Numerical examples are presented to demonstrate the promising performance of this LS-DYNA machine learning-based multiscale method for SFRC modeling.
翻译:短期纤维强化复合材料(SFRC)是汽车和电子工业中轻量结构应用的高性能工程材料。通常,SFRC结构是用注射模具制造的,它诱发各种不同的微结构,由此产生的非线性厌食性行为具有挑战性,难以通过常规微机械分析预测。在这项工作中,我们提出了一个基于机械的学习的多尺度方法,将注射模具引起的微结构、材料同质化和深质材料网络(DMN)纳入用于SFRC结构分析的有限元素模拟软件LS-NDYNA(DYNA)中。DMN是一种由物理组装的机器学习模型,通过离线培训学习在具有代表性的复合体积元素中隐藏的微规模材料形态。通过将DMNM(DM)与有限要素相结合,我们开发了一种非常准确和高效的数据驱动方法,在计算速度顺序上预测复合材料和结构的非线性行为模式,其速度比统一直接数字模拟更快。DMR(M)是一种由物理组组成的机组组成的机器学习模型,在模型中,用于SFSM(M)A型)的模拟中,该模型的模型的缩缩缩成成的模型的模型的模型,其成型模型,其成型模型的模型,其成型成型成型成型成型成型成型成型成型的模。