Perturbation theory plays a crucial role in sensitivity analysis, which is extensively used to assess the robustness of numerical techniques. To quantify the relative sensitivity of any problem, it becomes essential to investigate structured condition numbers (CNs) via componentwise perturbation theory. This paper addresses and analyzes structured mixed condition number (MCN) and componentwise condition number (CCN) for the Moore-Penrose (M-P) inverse and the minimum norm least squares (MNLS) solution involving rank-structured matrices, which include the Cauchy-Vandermonde (CV) matrices and $\{1,1\}$-quasiseparable (QS) matrices. A general framework has been developed to compute the upper bounds for MCN and CCN of rank deficient parameterized matrices. This framework leads to faster computation of upper bounds of structured CNs for CV and $\{1,1\}$-QS matrices. Furthermore, comparisons of obtained upper bounds are investigated theoretically and experimentally. In addition, the structured effective CNs for the M-P inverse and the MNLS solution of $\{1,1\}$-QS matrices are presented. Numerical tests reveal the reliability of the proposed upper bounds as well as demonstrate that the structured effective CNs are computationally less expensive and can be substantially smaller compared to the unstructured CNs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

中国神经科学学会(CNS)是由全国的科研、教学和医院等单位中的神经科学工作者组成的,具有独立法人资格的非营利性社会团体。自2016年起,学会开始致力于神经科学学科引领和学术战略规划。2016-2018年完成了中国科协《神经科学方向预测与技术路线图》项目和《生命科学领域前沿跟踪研究》项目,并且已经由科学出版社正式出版,2020年完成了《神经科学和类脑人工智能发展-新进展新趋势》。2020-2021年还将完成《我国类脑智能产业与技术发展路线图研究》和《科技经济融合发展-智能细胞制造科技创新与产业发展战略研究》。2020年开始学会将每年开展评选年度“中国神经科学重大进展”。 中国神经科学学会年会即全国学术会议,是我国神经科学领域规模最大、学术水平最高的学术会议。从2021年开始,改为一年一次,并且与海内外华人神经科学家研讨会结合在一起。学会下属专业分会每年召开形式多样、内容丰富的学术会议和培训班,促进了神经科学领域的学术交流和合作。
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月3日
Arxiv
0+阅读 · 2023年12月29日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员