Semi-Supervised Domain Adaptation (SSDA) is a recently emerging research topic that extends from the widely-investigated Unsupervised Domain Adaptation (UDA) by further having a few target samples labeled, i.e., the model is trained with labeled source samples, unlabeled target samples as well as a few labeled target samples. Compared with UDA, the key to SSDA lies how to most effectively utilize the few labeled target samples. Existing SSDA approaches simply merge the few precious labeled target samples into vast labeled source samples or further align them, which dilutes the value of labeled target samples and thus still obtains a biased model. To remedy this, in this paper, we propose to decouple SSDA as an UDA problem and a semi-supervised learning problem where we first learn an UDA model using labeled source and unlabeled target samples and then adapt the learned UDA model in a semi-supervised way using labeled and unlabeled target samples. By utilizing the labeled source samples and target samples separately, the bias problem can be well mitigated. We further propose a consistency learning based mean teacher model to effectively adapt the learned UDA model using labeled and unlabeled target samples. Experiments show our approach outperforms existing methods.
翻译:半监督领域自适应(SSDA)是最近出现的研究课题,它从广泛研究的无监督领域自适应(UDA)扩展而来,进一步增加了一些标记的目标样本。也就是说,该模型既使用标记的源样本,无标记的目标样本,也使用少量的标记目标样本进行训练。与UDA相比,SSDA 的关键在于如何最有效地利用少量的标记目标样本。现有的SSDA方法简单地将少量宝贵的标记目标样本合并到大量标记的源样本中或进一步将它们进行对齐,这稀释了标记目标样本的价值,因此仍然会得到一个有偏的模型。为了纠正这种情况,本文提出将SSDA分解为UDA问题和半监督学习问题。我们首先使用标记源和无标记目标样本学习UDA模型,然后使用标记和无标记的目标样本以半监督的方式进行学习。通过分别利用标记源样本和目标样本,可以很好地减轻偏见问题。我们进一步提出了一种基于一致性学习的平均方法模型,以有效地使用标记和无标记目标样本适应已学习的UDA模型。实验结果表明,我们的方法优于现有方法。