In this work, we want to learn to model the dynamics of similar yet distinct groups of interacting objects. These groups follow some common physical laws that exhibit specificities that are captured through some vectorial description. We develop a model that allows us to do conditional generation from any such group given its vectorial description. Unlike previous work on learning dynamical systems that can only do trajectory completion and require a part of the trajectory dynamics to be provided as input in generation time, we do generation using only the conditioning vector with no access to generation time's trajectories. We evaluate our model in the setting of modeling human gait and, in particular pathological human gait.
翻译:在这项工作中,我们希望学习模拟类似但不同的互动对象群的动态。 这些对象群遵循一些共同的物理法则,这些物理法则显示通过某种矢量描述所捕捉到的特性。 我们开发了一个模型,允许我们从任何这样的群体中从它的矢量描述中进行有条件的生成。 与以往关于学习动态系统的工作不同,这些系统只能完成轨道,并且需要将部分轨道动态作为生成时间的输入,我们只使用没有生成时间轨迹的调节矢量进行生成。 我们评估了我们在模拟人类行迹,特别是病理人类行迹的模型设置中的模型。