This paper considers the joint optimization of trajectory and beamforming of a wirelessly connected robot using intelligent reflective surface (IRS)-assisted millimeter-wave (mm-wave) communications. The goal is to minimize the motion energy consumption subject to time and communication quality of service (QoS) constraints. This is a fundamental problem for industry 4.0, where robots may have to maximize their battery autonomy and communication efficiency. In such scenarios, IRSs and mm-waves can dramatically increase the spectrum efficiency of wireless communications providing high data rates and reliability for new industrial applications. We present a solution to the optimization problem that exploits mm-wave channel characteristics to decouple beamforming and trajectory optimizations. Then, the latter is solved by a successive-convex optimization (SCO) algorithm. The algorithm takes into account the obstacles' positions and a radio map and provides solutions that avoid collisions and satisfy the QoS constraint. Moreover, we prove that the algorithm converges to a solution satisfying the Karush-Kuhn-Tucker (KKT) conditions.
翻译:本文考虑利用智能反射表面(IRS)辅助毫米波(毫米波)通信,联合优化轨道和无线连接机器人的光束,目标是在服务时间和通信质量(Qos)的限制下,尽量减少运动能源消耗,这是工业4.0的一个基本问题,因为机器人可能必须最大限度地提高电池自主和通信效率。在这种情况下,IRS和毫米波可以大大提高无线通信的频谱效率,为新的工业应用提供高数据率和可靠性。我们提出了一个优化问题的解决办法,利用毫米波频道特性来断开波束和轨迹优化。然后,后者通过连续的螺旋优化算法加以解决。算法考虑到障碍的位置和无线电地图,并提供避免碰撞和满足Qos限制的解决方案。此外,我们证明算法与满足Karush-Kuhn-Tucker(KKT)条件的解决方案一致。