With the proliferation of pump-and-dump schemes (P&Ds) in the cryptocurrency market, it becomes imperative to detect such fraudulent activities in advance to alert potentially susceptible investors. In this paper, we focus on predicting the pump probability of all coins listed in the target exchange before a scheduled pump time, which we refer to as the target coin prediction task. Firstly, we conduct a comprehensive study of the latest 709 P&D events organized in Telegram from Jan. 2019 to Jan. 2022. Our empirical analysis reveals some interesting patterns of P&Ds, such as that pumped coins exhibit intra-channel homogeneity and inter-channel heterogeneity. Here channel refers a form of group in Telegram that is frequently used to coordinate P&D events. This observation inspires us to develop a novel sequence-based neural network, dubbed SNN, which encodes a channel's P&D event history into a sequence representation via the positional attention mechanism to enhance the prediction accuracy. Positional attention helps to extract useful information and alleviates noise, especially when the sequence length is long. Extensive experiments verify the effectiveness and generalizability of proposed methods. Additionally, we release the code and P&D dataset on GitHub: https://github.com/Bayi-Hu/Pump-and-Dump-Detection-on-Cryptocurrency, and regularly update the dataset.


翻译:随着Pump-and-Dump(P&D)操纵在加密货币市场上的广泛出现,提前检测这种欺诈活动以警示潜在易感投资者变得至关重要。本文关注于预测计划Pump时间之前在目标交易所所有上市货币的Pump概率,我们将其称为目标币预测任务。首先,我们对Telegram从2019年1月至2022年1月的最新709次P&D事件进行了全面研究。我们的实证分析揭示了一些有趣的P&D模式,例如,被操纵的货币表现出 intra-channel 一致性和 inter-channel 多样性。这个观察启发我们开发了一种新的基于序列的神经网络,称为 SNN,它通过位置注意机制将一个channel的P&D事件历史记录编码成序列表示,以提高预测精度。位置注意机制有助于提取有用信息并消除噪声,特别是当序列长度很长时。广泛的实验验证了所提方法的有效性和通用性。此外,我们在GitHub上发布了代码和P&D数据集:https://github.com/Bayi-Hu/Pump-and-Dump-Detection-on-Cryptocurrency,并定期更新数据集。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
127+阅读 · 2023年1月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
127+阅读 · 2023年1月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员