Long-range temporal alignment is critical yet challenging for video restoration tasks. Recently, some works attempt to divide the long-range alignment into several sub-alignments and handle them progressively. Although this operation is helpful in modeling distant correspondences, error accumulation is inevitable due to the propagation mechanism. In this work, we present a novel, generic iterative alignment module which employs a gradual refinement scheme for sub-alignments, yielding more accurate motion compensation. To further enhance the alignment accuracy and temporal consistency, we develop a non-parametric re-weighting method, where the importance of each neighboring frame is adaptively evaluated in a spatial-wise way for aggregation. By virtue of the proposed strategies, our model achieves state-of-the-art performance on multiple benchmarks across a range of video restoration tasks including video super-resolution, denoising and deblurring. Our project is available in \url{https://github.com/redrock303/Revisiting-Temporal-Alignment-for-Video-Restoration.git}.
翻译:长距离时间调整对于视频恢复任务至关重要,但对于视频恢复任务却具有挑战性。 最近,一些工作试图将长距离调整分为若干次调整并逐步处理。 虽然这项操作有助于模拟远程通信, 但由于传播机制, 错误累积是不可避免的。 在这项工作中, 我们提出了一个新型的通用迭代调整模块, 该模块对子调整采用渐进的完善计划, 产生更准确的动作补偿。 为了进一步提高调整准确性和时间一致性, 我们开发了一种非参数的重新加权方法, 根据该方法, 以空间角度对每个相邻框架的重要性进行适应性评估, 以便汇总。 根据拟议战略, 我们的模型在包括视频超分辨率、 分解和分流在内的多个视频恢复任务中实现最先进的业绩。 我们的项目可在以下网站查阅: url{https://github.com/redrock303/Revicting-Temperal-Alinment- For- Video-Restoration. git}。