We consider the following class of submodular k-multiway partitioning problems: (Sub-$k$-MP) $\min \sum_{i=1}^k f(S_i): S_1 \uplus S_2 \uplus \cdots \uplus S_k = V \mbox{ and } S_i \neq \emptyset \mbox{ for all }i\in [k]$. Here $f$ is a non-negative submodular function, and $\uplus$ denotes the union of disjoint sets. Hence the goal is to partition $V$ into $k$ non-empty sets $S_1,S_2,\ldots,S_k$ such that $\sum_{i=1}^k f(S_i)$ is minimized. These problems were introduced by Zhao et al. partly motivated by applications to network reliability analysis, VLSI design, hypergraph cut, and other partitioning problems. In this work we revisit this class of problems and shed some light onto their hardness of approximation in the value oracle model. We provide new unconditional hardness results for Sub-$k$-MP in the special settings where the function $f$ is either monotone or symmetric. For symmetric functions we show that given any $\epsilon > 0$, any algorithm achieving a $(2 - \epsilon)$-approximation requires exponentially many queries in the value oracle model. For monotone objectives we show that given any $\epsilon > 0$, any algorithm achieving a $(4/3 - \epsilon)$-approximation requires exponentially many queries in the value oracle model. We then extend Sub-$k$-MP to a larger class of partitioning problems, where the functions $f_i(S_i)$ can now be all different, and there is a more general partitioning constraint $ S_1 \uplus S_2 \uplus \cdots \uplus S_k \in \mathcal{F}$ for some family $\mathcal{F} \subseteq 2^V$ of feasible sets. We provide a black box reduction that allows us to leverage several existing results from the literature; leading to new approximations for this class of problems.


翻译:我们考虑以下分类的子modual k- mutway 分区问题 : (Sub- $- k$- MP) $- 美元==xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Approximate GCD in Lagrange bases
Arxiv
0+阅读 · 2021年3月25日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员