We present an efficient and practical (polynomial time) algorithm for online prediction in unknown and partially observed linear dynamical systems (LDS) under stochastic noise. When the system parameters are known, the optimal linear predictor is the Kalman filter. However, the performance of existing predictive models is poor in important classes of LDS that are only marginally stable and exhibit long-term forecast memory. We tackle this problem through bounding the generalized Kolmogorov width of the Kalman filter model by spectral methods and conducting tight convex relaxation. We provide a finite-sample analysis, showing that our algorithm competes with Kalman filter in hindsight with only logarithmic regret. Our regret analysis relies on Mendelson's small-ball method, providing sharp error bounds without concentration, boundedness, or exponential forgetting assumptions. We also give experimental results demonstrating that our algorithm outperforms state-of-the-art methods. Our theoretical and experimental results shed light on the conditions required for efficient probably approximately correct (PAC) learning of the Kalman filter from partially observed data.
翻译:我们在随机噪音下对未知和部分观测的线性动态系统(LDS)进行在线预测,我们提出了一个高效和实用(Polynomiaal time)算法。当系统参数为人所知时,最佳线性预测器是Kalman过滤器。然而,现有预测模型的性能在LDS的重要类别中是差的,这些类别只是略微稳定,并表现出长期的预测记忆。我们通过光谱方法将卡尔曼过滤模型的通用科尔莫戈夫宽度结合起来,并进行严格的锥形放松,来解决这个问题。我们提供了一个有限抽样分析,表明我们的算法与Kalman过滤器在后视中进行竞争,只有对数值的遗憾。我们的遗憾分析依赖于Mendelson的小型球法,在没有集中、约束或指数式的遗忘假设的情况下提供了尖锐的误界。我们还提供了实验结果,表明我们的算法超越了最先进的方法。我们的理论和实验结果揭示了从部分观测到的数据中学习卡尔曼过滤器所需的有效条件(PAC)可能大致正确。