Spiking neural networks (SNNs) have made great progress on both performance and efficiency over the last few years,but their unique working pattern makes it hard to train a high-performance low-latency SNN.Thus the development of SNNs still lags behind traditional artificial neural networks (ANNs).To compensate this gap,many extraordinary works have been proposed.Nevertheless,these works are mainly based on the same kind of network structure (i.e.CNN) and their performance is worse than their ANN counterparts,which limits the applications of SNNs.To this end,we propose a novel Transformer-based SNN,termed "Spikeformer",which outperforms its ANN counterpart on both static dataset and neuromorphic dataset and may be an alternative architecture to CNN for training high-performance SNNs.First,to deal with the problem of "data hungry" and the unstable training period exhibited in the vanilla model,we design the Convolutional Tokenizer (CT) module,which improves the accuracy of the original model on DVS-Gesture by more than 16%.Besides,in order to better incorporate the attention mechanism inside Transformer and the spatio-temporal information inherent to SNN,we adopt spatio-temporal attention (STA) instead of spatial-wise or temporal-wise attention.With our proposed method,we achieve competitive or state-of-the-art (SOTA) SNN performance on DVS-CIFAR10,DVS-Gesture,and ImageNet datasets with the least simulation time steps (i.e.low latency).Remarkably,our Spikeformer outperforms other SNNs on ImageNet by a large margin (i.e.more than 5%) and even outperforms its ANN counterpart by 3.1% and 2.2% on DVS-Gesture and ImageNet respectively,indicating that Spikeformer is a promising architecture for training large-scale SNNs and may be more suitable for SNNs compared to CNN.We believe that this work shall keep the development of SNNs in step with ANNs as much as possible.Code will be available.


翻译:在过去几年里,Spiking神经网络(SNNS)在性能和效率方面取得了巨大进步。但是它们独特的工作模式使得很难训练高性能的智能智能SNN。所以SNNS的发展仍然落后于传统的人工神经网络(ANNS)。为了弥补这一差距,已经提出了许多非凡的工程。不管怎样,这些工程主要基于同样的网络结构(即CNN),它们的表现比ANNS的更差,这限制了SNNS的应用。为此,我们提议了一个全新的基于SNNS的变异性智能SNN, 以SpiketerSternetSternetSternetSterstate为制式的变异性阵列,这在静态数据集和神经变异性数据网中都比ANCNCNet级的变异性阵列。首先,解决“数据饥饿”问题和在Vanilla模型中显示的不稳定的培训时期,我们设计了变异式Tokenizer(CT)模块,这可以提高DS-VS-OIS-stal-state Studate Studate Studate Study) 模型的准确性模型的准确性模型,通过16个S-rodustryS-s-st-st-st tosideal-st

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员