In 5G non-standalone mode, an intelligent traffic steering mechanism can vastly aid in ensuring smooth user experience by selecting the best radio access technology (RAT) from a multi-RAT environment for a specific traffic flow. In this paper, we propose a novel load-aware traffic steering algorithm based on hierarchical reinforcement learning (HRL) while satisfying diverse QoS requirements of different traffic types. HRL can significantly increase system performance using a bi-level architecture having a meta-controller and a controller. In our proposed method, the meta-controller provides an appropriate threshold for load balancing, while the controller performs traffic admission to an appropriate RAT in the lower level. Simulation results show that HRL outperforms a Deep Q-Learning (DQN) and a threshold-based heuristic baseline with 8.49%, 12.52% higher average system throughput and 27.74%, 39.13% lower network delay, respectively.
翻译:在5G非独立模式下,智能交通指导机制可以极大地帮助确保用户顺利地体验,从多RAT环境中选择适合特定交通流量的最佳无线电接入技术(RAT),在本文中,我们提出基于等级强化学习的新式负载觉交通指导算法,同时满足不同交通类型不同的QOS要求。HRL可以使用具有元控制器和控制器的双级结构,大大提高系统性能。在我们提议的方法中,元控制器为负载平衡提供了适当的门槛,而控制器则在较低水平上将交通进入适当的RAT。模拟结果表明,HRL比深QRE(D)和基于阈值的超模量基底基底线分别高出8.49%、12.52%的系统平均吞吐量和27.74%的网络延迟率低39.13%。