This paper develops an adaptive version of Mallat's scattering transform for signals on graphs. The main results are norm bounds for the layers of the transform, obtained from a version of a Beurling-Deny inequality that permits to remove the nonlinear steps in the scattering transform. Under statistical assumptions on the input signal, the norm bounds can be refined. The concepts presented here are illustrated with an application to traffic counts which exhibit characteristic daily and weekly periodicities. Anomalous traffic patterns which deviate from these expected periodicities produce a response in the scattering transform.
翻译:本文开发了一个适应性版本的 Mallat 散射变换图纸上的信号。 主要结果为变换层的规范界限, 取自一个版本的 Beurling- Deny 不平等, 允许去除散射变换的非线性步骤 。 根据输入信号的统计假设, 规范界限可以改进 。 这里介绍的概念可以用一个显示每日和每周周期性特点的交通计数应用来说明 。 不同于这些预期周期的异常交通模式 产生散射变异的反应 。