In time series forecasting, decomposition-based algorithms break aggregate data into meaningful components and are therefore appreciated for their particular advantages in interpretability. Recent algorithms often combine machine learning (hereafter ML) methodology with decomposition to improve prediction accuracy. However, incorporating ML is generally considered to sacrifice interpretability inevitably. In addition, existing hybrid algorithms usually rely on theoretical models with statistical assumptions and focus only on the accuracy of aggregate predictions, and thus suffer from accuracy problems, especially in component estimates. In response to the above issues, this research explores the possibility of improving accuracy without losing interpretability in time series forecasting. We first quantitatively define interpretability for data-driven forecasts and systematically review the existing forecasting algorithms from the perspective of interpretability. Accordingly, we propose the W-R algorithm, a hybrid algorithm that combines decomposition and ML from a novel perspective. Specifically, the W-R algorithm replaces the standard additive combination function with a weighted variant and uses ML to modify the estimates of all components simultaneously. We mathematically analyze the theoretical basis of the algorithm and validate its performance through extensive numerical experiments. In general, the W-R algorithm outperforms all decomposition-based and ML benchmarks. Based on P50_QL, the algorithm relatively improves by 8.76% in accuracy on the practical sales forecasts of JD.com and 77.99% on a public dataset of electricity loads. This research offers an innovative perspective to combine the statistical and ML algorithms, and JD.com has implemented the W-R algorithm to make accurate sales predictions and guide its marketing activities.
翻译:在时间序列预测中,基于分解的算法将综合数据分成有意义的组成部分,因此,由于在可解释性方面具有特别的优势而得到赞赏。最近的算法往往将机器学习(下称ML)的方法与分解法结合起来,以提高预测的准确性。然而,一般认为纳入ML会不可避免地牺牲解释性。此外,现有的混合算法通常依赖带有统计假设的理论模型,只注重总预测的准确性,因此只注重总预测的准确性,特别是组成部分估计方面的准确性问题。针对上述问题,本研究探讨了提高准确性的可能性,同时又不丧失时间序列预测的可解释性。我们首先从可解释性的角度从数量上界定数据驱动的预测的可解释性,并系统地审查现有的预测算法。因此,我们建议采用W-R算法,即混合算法,将分解与ML相结合。 具体地,W-R算法用加权变法取代标准组合功能,同时使用ML来修改所有组成部分的估计数。我们用数学分析算法的理论基础,并通过广泛的数字实验来验证其业绩。我们首先从可定量界定数据预测,从可解释性的J-R算法和系统从可系统地从可系统地审查现有的可解释性算法分析现有算法,然后从可比较的计算出J-R算法,用J-R算算法,用S-R算算法,用S-L的计算出其精确性计算法,然后算法,然后用S-L的计算出整个的计算出其算出整个的计算出整个的计算法,然后用S的算法,使整个算算算算算算算算算法,使整个的计算法,使J-ML的计算出整个的计算法,使J-L的计算法,使J-L的计算法,使整个的计算法的计算法,使整个的计算法的计算法的计算法的计算法的计算性能的计算性能的计算性能的算法使整个的算法使整个的算法和ML的算法使J-L的算法,使整个的算法和M-L的计算法的计算法的计算法的计算法的计算法和ML的算法使J-L的算取的计算法的计算法使整个的计算出整个的