The problem of estimating location (scale) parameters of two distributions when the ordering between them is known apriori has been extensively studied in the literature. Many of these studies are centered around deriving estimators that dominate the maximum likelihood estimators and/or best location (scale) equivariant estimators for the unrestricted case, by exploiting the prior information. Several of these studies consider specific distributions such that the associated random variables are statistically independent. In this paper, we consider a general bivariate model and general loss function and unify various results proved in the literature. We also consider applications of these results to various dependent bivariate models (bivariate normal, a bivariate exponential model based on a Morgenstern family copula, a bivariate model due to Cheriyan and Ramabhadran's and Mckay's bivariate gamma model) not studied in the literature. We also apply our results to two bivariate models having independent marginals (exponential-location and power-law distributions) that are already studied in the literature, and obtain the results proved in the literature for these models as a special case of our study.


翻译:文献中广泛研究了在知道两个分布点之间定序时估计其位置(比例)参数的问题,文献中广泛研究了其中两个分布点的位置(比例)参数的问题,其中许多研究的焦点是利用先前的资料,得出主宰最大可能性估计器和/或最佳位置(比例)等异性估计器,以决定该无限制案件的最大可能性估计器和/或最佳位置(比例)等异性估计器。一些研究考虑了具体的分布方法,因此相关的随机变量在统计上是独立的。在本文中,我们考虑了一般的双变量模型和一般损失函数,并统一了文献中证明的各种结果。我们还考虑将这些结果应用到各种依赖性的双变量模型(双变量正常,双变量指数模型,基于摩尔根族混合体的双变量指数模型,这是切里扬和拉马巴赫德兰以及麦克卡伊的双变量伽马模型),这些模型没有在文献中研究过。我们还将我们的结果应用在文献中已经研究过的两个具有独立边缘点(扩展点和权力法分布)的双变量模型中。我们还在文献中获取了这些模型的文献中证明的结果。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员