The problem of estimating location (scale) parameters of two distributions when the ordering between them is known apriori has been extensively studied in the literature. Many of these studies are centered around deriving estimators that dominate the maximum likelihood estimators and/or best location (scale) equivariant estimators for the unrestricted case, by exploiting the prior information. Several of these studies consider specific distributions such that the associated random variables are statistically independent. In this paper, we consider a general bivariate model and general loss function and unify various results proved in the literature. We also consider applications of these results to various dependent bivariate models (bivariate normal, a bivariate exponential model based on a Morgenstern family copula, a bivariate model due to Cheriyan and Ramabhadran's and Mckay's bivariate gamma model) not studied in the literature. We also apply our results to two bivariate models having independent marginals (exponential-location and power-law distributions) that are already studied in the literature, and obtain the results proved in the literature for these models as a special case of our study.
翻译:文献中广泛研究了在知道两个分布点之间定序时估计其位置(比例)参数的问题,文献中广泛研究了其中两个分布点的位置(比例)参数的问题,其中许多研究的焦点是利用先前的资料,得出主宰最大可能性估计器和/或最佳位置(比例)等异性估计器,以决定该无限制案件的最大可能性估计器和/或最佳位置(比例)等异性估计器。一些研究考虑了具体的分布方法,因此相关的随机变量在统计上是独立的。在本文中,我们考虑了一般的双变量模型和一般损失函数,并统一了文献中证明的各种结果。我们还考虑将这些结果应用到各种依赖性的双变量模型(双变量正常,双变量指数模型,基于摩尔根族混合体的双变量指数模型,这是切里扬和拉马巴赫德兰以及麦克卡伊的双变量伽马模型),这些模型没有在文献中研究过。我们还将我们的结果应用在文献中已经研究过的两个具有独立边缘点(扩展点和权力法分布)的双变量模型中。我们还在文献中获取了这些模型的文献中证明的结果。