We consider functional data which are measured on a discrete set of observation points. Often such data are measured with additional noise. We explore in this paper the factor structure underlying this type of data. We show that the latent signal can be attributed to the common components of a corresponding factor model and can be estimated accordingly, by borrowing methods from factor model literature. We also show that principal components, which play a key role in functional data analysis, can be accurately estimated after taking such a multivariate instead of a `functional' perspective. In addition to the estimation problem, we also address testing of the null-hypothesis of iid noise. While this assumption is largely prevailing in the literature, we believe that it is often unrealistic and not supported by a residual analysis.


翻译:我们考虑的是用一组离散的观察点测量的功能性数据。这些数据往往用额外的噪音来测量。我们在本文件中探讨这类数据背后的因素结构。我们表明,潜伏信号可以归结于一个相应的要素模型的共同组成部分,并可以通过从要素模型文献中借用方法进行相应的估计。我们还表明,主要组成部分在功能性数据分析中起着关键作用,在采用这种多变量而不是“功能性”观点之后,可以准确估计。除了估算问题外,我们还处理对静态的空虚的测试问题。虽然这一假设在文献中基本占上风,但我们认为它往往不切实际,而且没有得到残余分析的支持。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
49+阅读 · 2021年11月15日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
【经典书】贝叶斯统计学Python实战,209页pdf
专知会员服务
69+阅读 · 2020年12月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月23日
Arxiv
0+阅读 · 2022年1月21日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
9+阅读 · 2021年10月5日
VIP会员
相关VIP内容
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
49+阅读 · 2021年11月15日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
【经典书】贝叶斯统计学Python实战,209页pdf
专知会员服务
69+阅读 · 2020年12月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员