Key performance indicators(KPIs) are of great significance in the monitoring of wireless network service quality. The network service quality can be improved by adjusting relevant configuration parameters(CPs) of the base station. However, there are numerous CPs and different cells may affect each other, which bring great challenges to the association analysis of wireless network data. In this paper, we propose an adjustable multi-level association rule mining framework, which can quantitatively mine association rules at each level with environmental information, including engineering parameters and performance management(PMs), and it has interpretability at each level. Specifically, We first cluster similar cells, then quantify KPIs and CPs, and integrate expert knowledge into the association rule mining model, which improve the robustness of the model. The experimental results in real world dataset prove the effectiveness of our method.
翻译:关键业绩指标(KPIs)在监测无线网络服务质量方面具有重大意义。网络服务质量可以通过调整基地站的相关配置参数来改进,然而,许多CPs和不同的细胞可能会相互影响,这对无线网络数据的联合分析带来巨大挑战。在本文件中,我们提出了一个可调整的多层次联合规则采矿框架,该框架可以量化地确定环境信息,包括工程参数和绩效管理(PMs)的各级与地雷的联系规则,并且可以在每个级别进行解释。具体地说,我们首先将类似的细胞分组,然后量化KPIs和CPs,并将专家知识纳入联系规则采矿模式,以提高模型的稳健性。真实世界数据集的实验结果证明了我们的方法的有效性。