Diffusion-based generative models have recently emerged as powerful solutions for high-quality synthesis in multiple domains. Leveraging the bidirectional Markov chains, diffusion probabilistic models generate samples by inferring the reversed Markov chain based on the learned distribution mapping at the forward diffusion process. In this work, we propose Modiff, a conditional paradigm that benefits from the denoising diffusion probabilistic model (DDPM) to tackle the problem of realistic and diverse action-conditioned 3D skeleton-based motion generation. We are a pioneering attempt that uses DDPM to synthesize a variable number of motion sequences conditioned on a categorical action. We evaluate our approach on the large-scale NTU RGB+D dataset and show improvements over state-of-the-art motion generation methods.
翻译:利用双向马尔科夫链、扩散概率模型,根据在前方扩散过程中所学的分布图谱,推断反向的马尔科夫链,从而产生样本。在这项工作中,我们提议莫迪夫,这是一个有条件的范例,从分流扩散概率模型(DDPM)中受益,以解决现实的、不同行动条件的3D骨骼运动生成问题。我们是一个开拓性尝试,利用DDPM综合一系列以绝对行动为条件的可变运动序列。我们评估了我们在大规模NTU RGB+D数据集上的做法,并展示了对最新运动生成方法的改进。