Deformable object manipulation remains a challenging task in robotics research. Conventional techniques for parameter inference and state estimation typically rely on a precise definition of the state space and its dynamics. While this is appropriate for rigid objects and robot states, it is challenging to define the state space of a deformable object and how it evolves in time. In this work, we pose the problem of inferring physical parameters of deformable objects as a probabilistic inference task defined with a simulator. We propose a novel methodology for extracting state information from image sequences via a technique to represent the state of a deformable object as a distribution embedding. This allows to incorporate noisy state observations directly into modern Bayesian simulation-based inference tools in a principled manner. Our experiments confirm that we can estimate posterior distributions of physical properties, such as elasticity, friction and scale of highly deformable objects, such as cloth and ropes. Overall, our method addresses the real-to-sim problem probabilistically and helps to better represent the evolution of the state of deformable objects.
翻译:可变形物体操纵仍然是机器人研究中一项具有挑战性的任务。 参数推断和状态估计的常规技术通常依赖于对状态空间及其动态的精确定义。 虽然这适用于僵硬物体和机器人状态,但确定一个变形物体的状态空间及其在时间上如何演变仍是一个挑战性任务。 在这项工作中,我们提出了推断变形物体的物理参数作为模拟器定义的概率推论任务的问题。 我们提出了一个新颖的方法,通过一种技术从图像序列中提取国家信息,通过一种技术来代表可变形物体作为分布嵌入的状态。 这使得能够以有原则的方式将噪音状态观测直接纳入现代贝叶斯模拟推论工具。 我们的实验证实,我们可以估计物理特性的外在分布,例如弹性、摩擦和高度变形物体的规模,例如布和绳。 总体而言,我们的方法以可变形物体的演变过程以可比较性的方式处理实际到成问题,并有助于更好地代表变形物体的演变过程。