Computations involving invariant random vectors are directly related to the theory of invariants (cf. e.g [1]). Some simple observations along these lines are presented in this paper. For example, any $O(n)$-invariant is an expectation of a random tensor. Moreover, the average of elements of the standard basis of $O(n)$-invariants is equal to the expectation of a random Veronese tensor up to a known scalar multiplier.
翻译:涉及变量随机矢量的计算与变量理论直接相关(如[1]),本文按这些思路提出一些简单的意见,例如,任何O(n)$(n)-变量都是随机拉值的预期,此外,标准基要素($O(n)$(n)-变量)的平均值等于随机Veronee 振幅预期值,最高可达到已知的弧值乘数。</s>