Optical coherence tomography (OCT) is a prevalent imaging technique for retina. However, it is affected by multiplicative speckle noise that can degrade the visibility of essential anatomical structures, including blood vessels and tissue layers. Although averaging repeated B-scan frames can significantly improve the signal-to-noise-ratio (SNR), this requires longer acquisition time, which can introduce motion artifacts and cause discomfort to patients. In this study, we propose a learning-based method that exploits information from the single-frame noisy B-scan and a pseudo-modality that is created with the aid of the self-fusion method. The pseudo-modality provides good SNR for layers that are barely perceptible in the noisy B-scan but can over-smooth fine features such as small vessels. By using a fusion network, desired features from each modality can be combined, and the weight of their contribution is adjustable. Evaluated by intensity-based and structural metrics, the result shows that our method can effectively suppress the speckle noise and enhance the contrast between retina layers while the overall structure and small blood vessels are preserved. Compared to the single modality network, our method improves the structural similarity with low noise B-scan from 0.559 +\- 0.033 to 0.576 +\- 0.031.


翻译:光学一致性成像仪(OCT)是一种常见的视网膜成像技术,但受到多种复制性闪烁噪音的影响,这种噪音会降低包括血管和组织层在内的基本解剖结构的可见度。虽然平均的重复B扫描框架可以大大改善信号到噪音的光谱(SNR),但这需要更长的获取时间,可以引进运动的人工制品,给病人造成不适。在这个研究中,我们建议一种基于学习的方法,利用单机体噪音B扫描和假模版的信息,这种噪音会降低包括血管和组织层在内的基本解剖结构的可见度。假模样为在噪音B扫描中几乎看不到的层提供了良好的SNR,但能够大大改善信号到噪音的光线条纹(SNR),例如小船。通过使用聚变网络,每种模式的预期特征可以合并,其贡献的重量是可以调整的。通过强度和结构测量,结果显示我们的方法能够有效地抑制闪烁噪音,并增强视网层之间在自我融合方法下进行的对比,而整个结构-0.0B的压模模模模模模模模模样则比的模模模模模模模模模模模模模模的容器是比。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
专知会员服务
109+阅读 · 2020年3月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员