Using tiny, equal-sized tasks (Homogeneous microTasking, HomT) has long been regarded an effective way of load balancing in parallel computing systems. When combined with nodes pulling in work upon becoming idle, HomT has the desirable property of automatically adapting its load distribution to the processing capacities of participating nodes - more powerful nodes finish their work sooner and, therefore, pull in additional work faster. As a result, HomT is deemed especially desirable in settings with heterogeneous (and possibly possessing dynamically changing) processing capacities. However, HomT does have additional scheduling and I/O overheads that might make this load balancing scheme costly in some scenarios. In this paper, we first analyze these advantages and disadvantages of HomT. We then propose an alternative load balancing scheme - Heterogeneous MacroTasking (HeMT) - wherein workload is intentionally partitioned according to nodes' processing capacity. Our goal is to study when HeMT is able to overcome the performance disadvantages of HomT. We implement a prototype of HeMT within the Apache Spark application framework with complementary enhancements to the Apache Mesos cluster manager. Spark's built-in scheduler, when parameterized appropriately, implements HomT. Our experimental results show that HeMT out-performs HomT when accurate workload-specific estimates of nodes' processing capacities are learned. As representative results, Spark with HeMT offers about 10% better average completion times for realistic data processing workloads over the default system.


翻译:使用微小的、同等规模的任务( HomT) 长期以来一直被认为是平行计算系统中一种有效的负载平衡方法。 当HomT在闲置后与节点拉动工作时, 将自动调整其负载分配以适应参与节点的处理能力---- 更强大的节点更快地完成工作, 从而更快地拉动额外工作。 因此, HomT被认为特别适合在具有多种( 可能具有动态变化的) 处理能力的环境中。 然而, HomT确实有额外的时间安排和 I/ O 间接费用, 这可能使这个负平衡计划在某些情景中变得昂贵。 在本文中, 我们首先分析HomT的这些优缺点。 然后我们提出一个其他的负载平衡方案 - 超常的宏图( HemT) 。 当 HemT 能够克服 HomT 的性能劣势时, 我们的目标是在 Apache Spark 应用框架内安装一个HEMT 模型, 并补充对 Aggest Meos 类组的精度处理能力进行补充。 当HMT 测试时, 测试显示我们10 平均的进度时, 的进度显示我们完成结果, 当HMT 完成时间时, 他的进度显示的进度, 我们的Smmt- hash- hexmt

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员