Software developed helps world a better place ranging from system software, open source, application software and so on. Software engineering does have neural network models applied to code suggestion, bug report summarizing and so on to demonstrate their effectiveness at a real SE task. Software and machine learning algorithms combine to make software give better solutions and understanding of environment. In software, there are both generalized applications which helps solve problems for entire world and also some specific applications which helps one particular community. To address the computational challenge in deep learning, many tools exploit hardware features such as multi-core CPUs and many-core GPUs to shorten the training time. Machine learning algorithms have a greater impact in the world but there is a considerable amount of memory utilization during the process. We propose a new tool for analysis of memory utilized for developing and training deep learning models. Our tool results in visual utilization of memory concurrently. Various parameters affecting the memory utilization are analysed while training. This tool helps in knowing better idea of processes or models which consumes more memory.
翻译:开发的软件有助于世界更美好的地方, 包括系统软件、 开放源码、 应用软件等等。 软件工程确实有神经网络模型, 用于代码建议、 错误总结报告等等, 以证明它们在真正的 SE 任务中的有效性。 软件和机器学习算法相结合, 使软件能够提供更好的解决方案和对环境的了解。 在软件中, 两种通用应用程序都有助于解决整个世界的问题, 还有一些特定应用程序可以帮助特定社区。 为了应对深层次学习的计算挑战, 许多工具利用硬件功能, 如多核心CPU 和多核心 GPU 来缩短培训时间。 机器学习算法在世界上影响更大, 但是在这一过程中有相当数量的记忆利用。 我们提出了一个用于分析用于开发和训练深层学习模型的记忆的新工具。 我们的工具在视觉上可以同时利用记忆。 在培训中分析影响记忆利用的各种参数。 此工具有助于更好地了解消耗更多记忆的过程或模型。