We introduce quantum-K ($QK$), a measure of the descriptive complexity of density matrices using classical prefix-free Turing machines and show that the initial segments of weak Solovay random and quantum Schnorr random states are incompressible in the sense of $QK$. Many properties enjoyed by prefix-free Kolmogorov complexity ($K$) have analogous versions for $QK$; notably a counting condition. Several connections between Solovay randomness and $K$, including the Chaitin type characterization of Solovay randomness, carry over to those between weak Solovay randomness and $QK$. We work towards a Levin-Schnorr type characterization of weak Solovay randomness in terms of $QK$. Schnorr randomness has a Levin-Schnorr characterization using $K_C$; a version of $K$ using a computable measure machine, $C$. We similarly define $QK_C$, a version of $QK$. Quantum Schnorr randomness is shown to have a Levin-Schnorr and a Chaitin type characterization using $QK_C$. The latter implies a Chaitin type characterization of classical Schnorr randomness using $K_C$.


翻译:我们引入了量子-K(QQ$),这是用古典无前缀图灵机器测量密度矩阵描述复杂性的一种尺度,它表明弱索洛维随机和量子Schnorr随机状态的初始部分在美元意义上是不可压缩的。许多无前缀的科尔莫戈罗夫复杂状态(K$)享有的属性相似的版本,其价值为美元;特别是一个计算条件。索洛维随机性和美元之间的若干连接,包括沙丁型索洛瓦随机性特征的描述,结转到弱索洛瓦随机性与美元之间的部分。我们致力于对弱索洛瓦随机性的利文-史诺尔类型描述。Schnorr随机性具有使用美元Levin-Schnologr定性的类似版本;Schnorr Revin-Schnoronical 的版本,其价值为$C。我们同样地定义了QK$-C,该版本是Q. Qantumtum Schnorr 随机性,使用“卡纳”的卡纳克兰-卡纳(C)类型。

0
下载
关闭预览

相关内容

Notability 是一款功能强大的备注记录软件,可用于注释文稿、草拟想法、录制演讲、记录备注等。它将键入、手写、录音和照片结合在一起,便于您根据需要创建相应的备注。在 iCloud 的支持下,您的备注在 iPad、iPhone 和 Mac 上将始终可用。晨昏相伴,如影随行。
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
117+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
已删除
将门创投
5+阅读 · 2020年3月2日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月23日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关主题
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
117+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
已删除
将门创投
5+阅读 · 2020年3月2日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员