We investigate variational principles for the approximation of quantum dynamics that apply for approximation manifolds that do not have complex linear tangent spaces. The first one, dating back to McLachlan (1964) minimizes the residuum of the time-dependent Schr\"odinger equation, while the second one, originating from the lecture notes of Kramer--Saraceno (1981), imposes the stationarity of an action functional. We characterize both principles in terms of metric and a symplectic orthogonality conditions, consider their conservation properties, and derive an elementary a-posteriori error estimate. As an application, we revisit the time-dependent Hartree approximation and frozen Gaussian wave packets.
翻译:我们调查了适用于没有复杂线性正切空间的近似量子动态近似值的可变原则。 第一个原则可以追溯到麦克拉克兰(1964年),最大限度地减少时间依赖 Schr\'odinger 等式的剩余量值,而第二个原则源自克拉默-萨勒斯诺(1981年)的讲演说明,它强制规定一个行动具有固定性。我们从量度和共振或正方位条件的角度来描述两个原则,考虑其保护特性,并得出一个基本的近似误差估计。作为一个应用,我们重新审视时间依赖Hartree的近似值和冻结的高斯波包。