Standard selection criteria for forecasting models focus on information that is calculated for each series independently, disregarding the general tendencies and performances of the candidate models. In this paper, we propose a new way to statistical model selection and model combination that incorporates the base-rates of the candidate forecasting models, which are then revised so that the per-series information is taken into account. We examine two schemes that are based on the precision and sensitivity information from the contingency table of the base rates. We apply our approach on pools of exponential smoothing models and a large number of real time series and we show that our schemes work better than standard statistical benchmarks. We discuss the connection of our approach to other cross-learning approaches and offer insights regarding implications for theory and practice.
翻译:预测模型的标准选择标准侧重于为每一系列独立计算的信息,而忽略了候选模型的一般趋势和表现。在本文件中,我们提出了一个新的统计模式选择方式和模式组合,其中纳入了候选预测模型的基准率,然后对这些模型进行修改,以便考虑到按系列提供的信息。我们研究了基于基准率应急表提供的精确和敏感信息的两个方案。我们采用的方法是指数式平滑模型集合体和大量实时时间序列,我们表明我们的计划比标准统计基准效果更好。我们讨论了我们与其他交叉学习方法的联系,并就理论和实践的影响提出了见解。