We study the limits of linear modeling of swarm behavior by characterizing the inflection point beyond which linear models of swarm collective behavior break down. The problem we consider is a central place object gathering task. We design a linear model which strives to capture the underlying dynamics of object gathering in robot swarms from first principles, rather than extensively relying on post-hoc model fitting. We evaluate our model with swarms of up to 8,000 robots in simulation, demonstrating that it accurately captures underlying swarm behavioral dynamics when the swarm can be approximated using the mean-field model, and when it cannot, and finite-size effects are present. We further apply our model to swarms exhibiting non-linear behaviors, and show that it still provides accurate predictions in some scenarios, thereby establishing better practical limits on linear modeling of swarm behaviors.
翻译:我们研究群落行为线性模型的极限,方法是将群集集体行为线性模型的特征化,超过此点的群集集体行为线性模型破裂。我们认为,问题是一个中心位置物体收集任务。我们设计了一个线性模型,努力从最初的原则中捕捉以机器人群聚集物体的内在动态,而不是广泛依赖后热模型的安装。我们用模拟中高达8 000个机器人的群数来评估我们的模型,表明它准确捕捉了群集行为动态背后的群集,当群集模型可以用中位模型进行近似时,以及当它不能使用时,以及有一定规模的效果。我们进一步将我们的模型应用于展示非线性行为的群集,并表明它仍然在某些情景中提供准确的预测,从而为群落行为的线性模型建立更好的实际界限。