We propose new copula-based models for multivariate time series having continuous or discrete distributions, or a mixture of both. These models include stochastic volatility models and regime-switching models. We also propose statistics for testing independence between the generalized errors of these models, extending previous results of Duchesne, Ghoudi and Remillard (2012) obtained for stochastic volatility models. We define families of empirical processes constructed from lagged generalized errors, and we show that their joint asymptotic distributions are Gaussian and independent of the estimated parameters of the individual time series. Moebius transformations of the empirical processes are used to obtain tractable covariances. Several tests statistics are then proposed, based on Cramer-von Mises statistics and dependence measures, as well as graphical methods to visualize the dependence. In addition, numerical experiments are performed to assess the power of the proposed tests. Finally, to show the usefulness of our methodologies, examples of applications for financial data and crime data are given to cover both discrete and continuous cases. ll developed methodologies are implemented in the CRAN package IndGenErrors.
翻译:暂无翻译