Width-based planning methods deal with conjunctive goals by decomposing problems into subproblems of low width. Algorithms like SIW thus fail when the goal is not easily serializable in this way or when some of the subproblems have a high width. In this work, we address these limitations by using a simple but powerful language for expressing finer problem decompositions introduced recently by Bonet and Geffner, called policy sketches. A policy sketch over a set of Boolean and numerical features is a set of sketch rules that express how the values of these features are supposed to change. Like general policies, policy sketches are domain general, but unlike policies, the changes captured by sketch rules do not need to be achieved in a single step. We show that many planning domains that cannot be solved by SIW are provably solvable in low polynomial time with the SIW_R algorithm, the version of SIW that employs user-provided policy sketches. Policy sketches are thus shown to be a powerful language for expressing domain-specific knowledge in a simple and compact way and a convenient alternative to languages such as HTNs or temporal logics. Furthermore, they make it easy to express general problem decompositions and prove key properties of them like their width and complexity.


翻译:以 Width 为基础的规划方法通过将问题分解成低宽度的子问题来处理共生目标。 SIW 这样的解算方法将问题分解成低宽度的子问题。 当目标不易以这种方式连序或某些子问题宽度高时, SIW 这样的解算方法就会失败。 在这项工作中, 我们用简单而有力的语言来表达最近由Bonet 和 Geffner 推出的细微问题分解, 称为政策草图。 一套布林和数字特征的政策草图是一套描述这些特征的价值如何变化的草图规则。 与一般政策一样, 政策草图是通用的, 但与政策草图不同, 草图所捕的修改不需要单一步骤实现。 我们表明, 许多无法通过 SIW 和 Geconomical 解析出来的计划领域, 在使用 SIW_ R 运算法的低调时, 和 SIW 的版本使用用户提供的政策草图。 因此, 政策草图被证明是表达具体域知识的有力语言的有力语言, 其简单、 和宽度问题, 被证明为 Htrolal 的简单化为一种简单、 的简单和最易的逻辑。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
148+阅读 · 2021年5月9日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
5+阅读 · 2021年8月5日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
5+阅读 · 2021年2月8日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员