We introduce a theory for computational control, consisting of eight naturally interpretable equations. Adding these to a prop of base circuits constructs controlled circuits, borne out in examples of reversible Boolean circuits and quantum circuits. We prove that this syntactic construction semantically corresponds to taking the free rig category on the base prop.
翻译:我们提出了一种计算控制理论,包含八个具有自然解释性的方程。将这些方程添加到基础电路道具中,即可构建受控电路,这在可逆布尔电路和量子电路的实例中得到了验证。我们证明,这种语法构造在语义上对应于对基础道具取自由环范畴。