Committee-based models (ensembles or cascades) construct models by combining existing pre-trained ones. While ensembles and cascades are well-known techniques that were proposed before deep learning, they are not considered a core building block of deep model architectures and are rarely compared to in recent literature on developing efficient models. In this work, we go back to basics and conduct a comprehensive analysis of the efficiency of committee-based models. We find that even the most simplistic method for building committees from existing, independently trained networks can match or exceed the accuracy of state-of-the-art models while being drastically more efficient. These simple committee-based models also outperform sophisticated neural architecture search methods (e.g., BigNAS). These findings hold true for several tasks, including image classification, video classification, and semantic segmentation, and various architecture families, such as ViT, EfficientNet, ResNet, MobileNetV2, and X3D. For example, an EfficientNet cascade can achieve a 5.4x speedup over B7 and a ViT-based cascade can achieve a 2.3x speedup over ViT-L-384 while being equally accurate.


翻译:以委员会为基础的模型(元件或级联)建模模式(以综合现有的经过培训的模型或级联),综合现有的经过独立培训的网络中,即使是建筑委员会的最简单方法,也能够匹配或超过最新模型的准确性,同时又能大大提高效率。这些以委员会为基础的模型和级联虽然是在深层次学习之前提出的,但并不被视为深层次模型结构的核心构件,而且与最近关于开发高效模型的文献中很少加以比较。在这项工作中,我们回到基础,对基于委员会的模式的效率进行全面分析。我们发现,即使是现有独立培训的网络中,即使是建筑委员会的最简单的方法,也可以匹配或超过最新模型的准确性,同时效率更高。这些基于委员会的简单模型也超越了复杂的神经结构搜索方法(如BigNAS)。这些发现对若干任务来说是真实的,包括图像分类、视频分类和语义分解,以及各种建筑家庭,例如VIT、高效的Net、ResNet、MiveNet2和X3D。例如,高效的网络级联可以实现5.4x速度超过B7的速度,而基于VT的级联能达到2.3x速度超过VT-L-384,同时同样准确。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
73+阅读 · 2021年10月17日
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年7月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
9+阅读 · 2021年5月17日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
73+阅读 · 2021年10月17日
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员