Many methods in defect prediction are "datahungry"; i.e. (1) given a choice of using more data, or some smaller sample, researchers assume that more is better; (2) when data is missing, researchers take elaborate steps to transfer data from another project; and (3) given a choice of older data or some more recent sample, researchers usually ignore older data. Based on the analysis of hundreds of popular Github projects (with 1.2 million commits), we suggest that for defect prediction, there is limited value in such data-hungry approaches. Data for our sample of projects last for 84 months and contains 3,728 commits (median values). Across these projects, most of the defects occur very early in their life cycle. Hence, defect predictors learned from the first 150 commits and four months perform just as well as anything else. This means that, contrary to the "data-hungry" approach, (1) small samples of data from these projects are all that is needed for defect prediction; (2) transfer learning has limited value since it is needed only for the first 4 of 84 months (i.e. just 4% of the life cycle); (3) after the first few months, we need not continually update our defect prediction models. We hope these results inspire other researchers to adopt a "simplicity-first" approach to their work. Certainly, there are domains that require a complex and data-hungry analysis. But before assuming complexity, it is prudent to check the raw data looking for "short cuts" that simplify the whole analysis.


翻译:缺陷预测的许多方法都是“ 数据饥饿” ; 即 (1) 如果选择使用更多的数据, 或一些较小的抽样, 研究人员认为情况更好些; (2) 如果数据缺失, 研究人员采取详细步骤从另一个项目传输数据; (3) 如果选择了更老的数据或最近的一些抽样, 研究人员通常忽视更老的数据。 根据对几百个受欢迎的Github项目的分析( 120万人承诺), 我们建议, 对于缺陷预测而言, 这种数据饥饿方法的价值有限。 我们的抽样项目的数据持续84个月, 包含3 728个承诺( 中间值) 。 在这些项目中, 大多数缺陷发生在他们生命周期的很早阶段。 因此, 从最初150个承诺中学会的缺陷预测者, 4个月的工作表现和任何其他情况一样。 这意味着, 与“ 数据饥饿” 的方法相反, (1) 这些项目的数据的少量样本是所有缺陷预测所需要的; (2) 转移学习的价值有限,因为只需要84个月头4个月中的头4个月中( 也就是生命周期中只有4 % ) ; (3) 在这些项目中, 大部分的缺陷都发生在生命周期中。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
12+阅读 · 2019年7月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
4+阅读 · 2018年4月11日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
12+阅读 · 2019年7月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员