Millimeter wave (mmWave) communication is a key component of 5G and beyond. Harvesting the gains of the large bandwidth and low latency at mmWave systems, however, is challenged by the sensitivity of mmWave signals to blockages; a sudden blockage in the line of sight (LOS) link leads to abrupt disconnection, which affects the reliability of the network. In addition, searching for an alternative base station to re-establish the link could result in needless latency overhead. In this paper, we address these challenges collectively by utilizing machine learning to anticipate dynamic blockages proactively. The proposed approach sees a machine learning algorithm learning to predict future blockages by observing what we refer to as the \textit{pre-blockage signature}. To evaluate our proposed approach, we build a mmWave communication setup with a moving blockage and collect a dataset of received power sequences. Simulation results on a real dataset show that blockage occurrence could be predicted with more than 85\% accuracy and the exact time instance of blockage occurrence can be obtained with low error. This highlights the potential of the proposed solution for dynamic blockage prediction and proactive hand-off, which enhances the reliability and latency of future wireless networks.


翻译:毫米波( mmWave) 通信是 5G 和 以后 5G 的关键组成部分。 然而,在毫米波段系统中收获大型带宽和低延迟度的收益受到毫米波段信号对阻塞装置的敏感度的挑战; 视线( LOS) 的突然阻塞连接导致突然断电, 从而影响网络的可靠性。 此外, 寻找替代基地站以重建连接可能导致不必要的悬浮管理。 在本文件中, 我们集体应对这些挑战, 利用机器学习来积极预测动态阻塞。 提议的方法看到机器学习算法学习如何通过观察我们所说的\ textit{ pre- 阻塞签字来预测未来的阻塞。 为了评估我们提议的方法, 我们用移动阻塞装置来建立一个毫米波段通信装置, 收集接收到的电源序列的数据集。 模拟数据组显示, 阻塞发生频率可以超过 85 ⁇ 的准确度, 和 阻塞发生的确切时间实例可以以低误获得。 这突出了拟议解决方案的潜力, 增强未来无线预测的可靠性和主动式手势网络。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
已删除
将门创投
4+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
43+阅读 · 2019年12月20日
Arxiv
7+阅读 · 2019年5月31日
Learning Discriminative Model Prediction for Tracking
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
已删除
将门创投
4+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员