In this paper, we study problems of connecting classes of points via noncrossing structures. Given a set of colored terminal points, we want to find a graph for each color that connects all terminals of its color with the restriction that no two graphs cross each other. We consider these problems both on the Euclidean plane and in planar graphs. On the algorithmic side, we give a Gap-ETH-tight EPTAS for the two-colored traveling salesman problem as well as for the red-blue-green separation problem (in which we want to separate terminals of three colors with two noncrossing polygons of minimum length), both on the Euclidean plane. This improves the work of Arora and Chang (ICALP 2003) who gave a slower PTAS for the simpler red-blue separation problem. For the case of unweighted plane graphs, we also show a PTAS for the two-colored traveling salesman problem. All these results are based on our new patching procedure that might be of independent interest. On the negative side, we show that the problem of connecting terminal pairs with noncrossing paths is NP-hard on the Euclidean plane, and that the problem of finding two noncrossing spanning trees is NP-hard in plane graphs.
翻译:在本文中,我们研究通过非交错结构连接分级点的问题。 在一组彩色终端点的情况下, 我们想要找到每个颜色连接其颜色的所有终点点的图表, 并且没有两个图形相互交叉的限制。 我们考虑在Euclidean 平面和平面图上的问题。 在算法方面, 我们给出了双色旅行推销员问题和红蓝色绿色分解问题( 在这两处我们想要将三个颜色的终端点与两个非交叉的最小长度多边形分隔开来) 。 这改善了Arora 和 Chang( ICHRP 2003) 的工作, 后者为更简单的红蓝色分解问题提供了较慢的 PTAS 。 在未加权的平面图方面, 我们还给出了双色旅行推销员问题的 PTAS 。 所有这些结果都基于我们可能具有独立兴趣的新分解程序。 在负面方面, 我们展示了将双色双向双向双向双向双向双向双向双向双向双向双向双向双向双向双向双向双向双向双向双向双向方向连接的双向双向双向方向连接问题。