Pre-trained language models have been successfully used in response generation for open-domain dialogue. Four main frameworks have been proposed: (1) Transformer-ED using Transformer encoder and decoder separately for source and target sentences; (2) Transformer-Dec using Transformer decoder for both source and target sentences; (3) Transformer-MLM using Transformer decoder that applies bi-directional attention on the source side and left-to-right attention on the target side with masked language model objective; and (4) Transformer-AR that uses auto-regressive objective instead. In this study, we compare these frameworks on 3 datasets, and our comparison reveals that the best framework uses bidirectional attention on the source side and does not separate encoder and decoder. We also examine model discrepancy, and our experiments confirm that the performance of a model is directly impacted by the underlying discrepancies. We then propose two correction methods to reduce the discrepancies, and both improve the model performance. These results show that discrepancies is an important factor to consider when we use a pre-trained model, and a reduction in discrepancies can lead to improved performance.


翻译:培训前语言模型已被成功地用于生成开放式对话的响应生成。提出了四个主要框架:(1) 变换器-ED,使用变换器编码器和解码器,分别用于源代码和具体目标句;(2) 变换器-Dec,使用变换器解码器,同时用于源代码和目标句;(3) 变换器-MLM,使用变换器解码器双向关注源端,左对右关注目标侧,并带有掩码语言模型目标;(4) 变换器-AR,使用自动递增目标。在本研究中,我们比较了3个数据集的这些框架,我们的比较表明,最佳框架在源端使用双向关注,而没有将编码器和解码器分开。我们还检查了模型差异,我们的实验证实模型的性能直接受到根本差异的影响。我们然后提出两个纠正方法,以减少差异,同时改进模型的性能。这些结果显示,差异是我们使用预先培训模型时要考虑的一个重要因素,减少差异可以导致改进性能。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
23+阅读 · 2020年4月7日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【ChatBot】NLP专题论文解读:从Chatbot到NER
产业智能官
8+阅读 · 2017年11月10日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
23+阅读 · 2020年4月7日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【ChatBot】NLP专题论文解读:从Chatbot到NER
产业智能官
8+阅读 · 2017年11月10日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员