Cryptographic signatures can be used to increase the resilience of distributed systems against adversarial attacks, by increasing the number of faulty parties that can be tolerated. While this is well-studied for consensus, it has been underexplored in the context of fault-tolerant clock synchronization, even in fully connected systems. Here, the honest parties of an $n$-node system are required to compute output clocks of small skew (i.e., maximum phase offset) despite local clock rates varying between $1$ and $\vartheta>1$, end-to-end communication delays varying between $d-u$ and $d$, and the interference from malicious parties. So far, it is only known that clock pulses of skew $d$ can be generated with (trivially optimal) resilience of $\lceil n/2\rceil-1$ (PODC `19), improving over the tight bound of $\lceil n/3\rceil-1$ holding without signatures for \emph{any} skew bound (STOC `84, PODC `85). Since typically $d\gg u$ and $\vartheta-1\ll 1$, this is far from the lower bound of $u+(\vartheta-1)d$ that applies even in the fault-free case (IPL `01). We prove matching upper and lower bounds of $\Theta(u+(\vartheta-1)d)$ on the skew for the resilience range from $\lceil n/3\rceil$ to $\lceil n/2\rceil-1$. The algorithm showing the upper bound is, under the assumption that the adversary cannot forge signatures, deterministic. The lower bound holds even if clocks are initially perfectly synchronized, message delays between honest nodes are known, $\vartheta$ is arbitrarily close to one, and the synchronization algorithm is randomized. This has crucial implications for network designers that seek to leverage signatures for providing more robust time. In contrast to the setting without signatures, they must ensure that an attacker cannot easily bypass the lower bound on the delay on links with a faulty endpoint.


翻译:加密签名可以用来提高分布式系统在对抗性攻击面前的复原力, 方法是增加可以容忍的错误方数目。 虽然这是为共识而研究的很好, 但即使在完全连接的系统中, 在不宽容的时钟同步背景下, 也一直没有得到充分的探索。 在这里, 一个美元点的诚实方需要计算小斜点( 即最大阶段抵消) 的输出时钟。 尽管本地时钟的汇率在1美元和 $ 瓦特尔特 > 1 之间, 增加可以容忍的错误方数目。 端到端的通信延迟在美元到 美元之间, 端到端的通信延迟在美元之间, 端端到端的电流的电流不能在美元值下, 端的电流和端的电流在美元上, 端的电流和端的电流在1美元值下, 端的电流和端的电流的电流在1美元值下, 。

0
下载
关闭预览

相关内容

PODC:ACM Symposium on Principles of Distributed Computing。 Explanation:分布式计算原理学术讨论会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/podc/
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月25日
Arxiv
0+阅读 · 2022年7月25日
Arxiv
0+阅读 · 2022年7月23日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员