In recent years, complementary sequence sets have found many important applications in multi-carrier code-division multiple-access (MC-CDMA) systems for their good correlation properties. In this paper, we propose a construction, which can generate multiple sets of complete complementary codes (CCCs) over $\mathbb{Z}_N$, where $N~(N\geq 3)$ is a positive integer of the form $N=p_0^{e^0}p_1^{e^1}\dots p_{n-1}^{e^{n-1}}$, $p_0<p_1<\cdots<p_{n-1}$ are prime factors of $N$ and $e_0,e_1,\cdots,e_{n-1}$ are non-negative integers. Interestingly, the maximum inter-set aperiodic cross-correlation magnitude of the proposed CCCs is upper bounded by $N$. When $N$ is odd, the combination of the proposed CCCs results to a new set of sequences to obtain asymptotically optimal and near-optimal aperiodic quasi-complementary sequence sets (QCSSs) with more flexible parameters.


翻译:近些年来, 补充序列组在多载代码-多存取系统( MC- CDMA) 多存取( MC- CDMA) 中发现许多重要应用。 在本文中, 我们提出一个构建方案, 它可以产生数组完整代码( CCCs), 超过$gathbb ⁇ N$, 其中$N~( geq 3) 是表格$N=p_ 0 ⁇ @ e ⁇ 0}p_ 1 ⁇ 1 ⁇ 1 ⁇ dots p ⁇ 1 ⁇ e ⁇ n-1 $, $p_ 0 < p_ 1 ⁇ cdosts < p ⁇ n-1} 。 我们建议构建一个构建方案, 能够产生数组完整代码( CCCs) 的多重组合, 超过 $_ 0, e_ 1,\\\ cdots, e\\ { n} 美元, 美元, 其中, $N=p_ = p_ 0. 0. { { { { { { { { { { { { { { { { } { { {, {, {, $ p_ 1} $_ $_ 1} { { { { { { { { { {, {, { } } { } } } { } } } 。 。 $; $; $ $ $; $; $; $ $ 1 < = $ = = = = = = = = = = = = = = = = = = $ = = = = = = = = = = = = = = 和 和 和 = ycd = = y- y- ir- ir- = = = y- y- ir- ir- ir- ir- ir- ir- = = y- = ir- ir- y- = ir-

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
76+阅读 · 2021年3月16日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
目标跟踪的一篇论文及代码视频
CreateAMind
8+阅读 · 2017年9月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月11日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
76+阅读 · 2021年3月16日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
目标跟踪的一篇论文及代码视频
CreateAMind
8+阅读 · 2017年9月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员