Let $\varphi$ be a sentence of $\mathsf{CMSO}_2$ (monadic second-order logic with quantification over edge subsets and counting modular predicates) over the signature of graphs. We present a dynamic data structure that for a given graph $G$ that is updated by edge insertions and edge deletions, maintains whether $\varphi$ is satisfied in $G$. The data structure is required to correctly report the outcome only when the feedback vertex number of $G$ does not exceed a fixed constant $k$, otherwise it reports that the feedback vertex number is too large. With this assumption, we guarantee amortized update time ${\cal O}_{\varphi,k}(\log n)$. By combining this result with a classic theorem of Erd\H{o}s and P\'osa, we give a fully dynamic data structure that maintains whether a graph contains a packing of $k$ vertex-disjoint cycles with amortized update time ${\cal O}_{k}(\log n)$. Our data structure also works in a larger generality of relational structures over binary signatures.


翻译:$\ varphie$ 在图形的签名上, 值 $\ mathsf{ CMSO%% 2 的值是 $\ mathsf{ CMSO% 2 的值 。 我们展示了一个动态数据结构, 对于某个通过边缘插入和边缘删除更新的图形$G$, 维持对美元是否满意的G$。 数据结构只有在反馈的顶点数不超过固定的不变值$G$时, 才会正确报告结果, 否则它报告反馈的顶点数太大 。 根据这个假设, 我们保证对更新时间进行摊销 $\ cal O ⁇ varphi, k} (\log n) 。 通过将这个结果与典型的Erd\ H{ o}s和 P\\ osa 的理论结合, 我们给出一个完全动态的数据结构, 以维持一个图表是否包含 $k$k verex- dission 的包装, 和 $\\\\ log n 更新时间的 。 我们的数据结构还将在更大的普通结构中工作。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年8月16日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
0+阅读 · 2021年9月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员