Instruction tuning is widely recognized as a key technique for building generalist language models, which has attracted the attention of researchers and the public with the release of InstructGPT~\citep{ouyang2022training} and ChatGPT\footnote{\url{https://chat.openai.com/}}. Despite impressive progress in English-oriented large-scale language models (LLMs), it is still under-explored whether English-based foundation LLMs can perform similarly on multilingual tasks compared to English tasks with well-designed instruction tuning and how we can construct the corpora needed for the tuning. To remedy this gap, we propose the project as an attempt to create a Chinese instruction dataset by various methods adapted to the intrinsic characteristics of 4 sub-tasks. We collect around 200k Chinese instruction tuning samples, which have been manually checked to guarantee high quality. We also summarize the existing English and Chinese instruction corpora and briefly describe some potential applications of the newly constructed Chinese instruction corpora. The resulting \textbf{C}hinese \textbf{O}pen \textbf{I}nstruction \textbf{G}eneralist (\textbf{COIG}) corpora are available in Huggingface\footnote{\url{https://huggingface.co/datasets/BAAI/COIG}} and Github\footnote{\url{https://github.com/BAAI-Zlab/COIG}}, and will be continuously updated.


翻译:Translated abstract: 指令调优被广泛认为是构建通用语言模型的关键技术,在InstructGPT(Ouyang等,2022)和ChatGPT的发布之后,受到了研究人员和公众的关注。尽管英语为基础的大规模语言模型(LLMs)取得了令人瞩目的进展,但仍未探索基于英语基础的LLMs在多语种任务中是否能像在英语任务中那样通过良好的指令调优来表现,以及我们如何构建所需的资源。为弥补这一空白,我们提出了该项目,旨在通过适应4个子任务的内在特点,采用多种方法创建一个中国指令数据集。我们收集了约20万个中文指令调优样本,并进行了手工审核以保证高质量。我们还总结了现有的英语和中文指令语料库,并简要描述了新构建的中文指令语料库的一些潜在应用。结果,中国Open Instruction通用模型(COIG)语料库在Huggingface和Github上可用,并将持续更新。

0
下载
关闭预览

相关内容

【2023新书】给Python程序员的GPT指南
专知会员服务
170+阅读 · 2023年5月9日
百篇论文纵览大型语言模型最新研究进展
专知会员服务
70+阅读 · 2023年3月31日
专知会员服务
90+阅读 · 2021年6月29日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
50+阅读 · 2020年4月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
打开模型Zero-Shot新范式:Instruction Tuning
PaperWeekly
2+阅读 · 2022年8月25日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
打开模型Zero-Shot新范式:Instruction Tuning
PaperWeekly
2+阅读 · 2022年8月25日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员