Linguistic entrainment is a phenomenon where people tend to mimic each other in conversation. The core instrument to quantify entrainment is a linguistic similarity measure between conversational partners. Most of the current similarity measures are based on bag-of-words approaches that rely on linguistic markers, ignoring the overall language structure and dialogue context. To address this issue, we propose to use a neural network model to perform the similarity measure for entrainment. Our model is context-aware, and it further leverages a novel component to learn the shared high-level linguistic features across dialogues. We first investigate the effectiveness of our novel component. Then we use the model to perform similarity measure in a corpus-based entrainment analysis. We observe promising results for both evaluation tasks.
翻译:语言内涵是一种人们往往在对话中互相模仿的现象。 量化内涵的核心工具是对话伙伴之间的语言相似度度量。 目前大多数类似度量量都基于依赖语言标记的一袋字方法,忽视了总体语言结构和对话背景。 为了解决这一问题,我们提议使用神经网络模型来对内涵进行类似度量。 我们的模式是符合背景的,它进一步利用一个新颖的组成部分来学习对话中共同的高层次语言特征。 我们首先调查我们新颖组成部分的有效性。 然后我们用该模型来进行基于组织内涵的分析中的类似度量量。 我们观察到两种评估任务都取得了有希望的结果。