Recent studies have put into question the commonly assumed shift invariance property of convolutional networks, showing that small shifts in the input can affect the output predictions substantially. In this paper, we analyze the benefits of addressing lack of shift invariance in CNN-based sound event classification. Specifically, we evaluate two pooling methods to improve shift invariance in CNNs, based on low-pass filtering and adaptive sampling of incoming feature maps. These methods are implemented via small architectural modifications inserted into the pooling layers of CNNs. We evaluate the effect of these architectural changes on the FSD50K dataset using models of different capacity and in presence of strong regularization. We show that these modifications consistently improve sound event classification in all cases considered. We also demonstrate empirically that the proposed pooling methods increase shift invariance in the network, making it more robust against time/frequency shifts in input spectrograms. This is achieved by adding a negligible amount of trainable parameters, which makes these methods an appealing alternative to conventional pooling layers. The outcome is a new state-of-the-art mAP of 0.541 on the FSD50K classification benchmark.


翻译:最近的研究质疑了革命网络通常假定的变换属性,表明输入的微小变化会大大影响产出预测。 在本文中,我们分析了解决CNN声音事件分类中缺乏变换的好处。具体地说,我们评估了两种组合方法,以改善CNN的变换,其基础是低通道过滤和对收到的地貌图进行适应性抽样。这些方法是通过在CNN集合层中插入小型建筑改造来实施的。我们利用不同能力模型和在高度正规化的情况下,评估这些建筑变化对FSD50K数据集的影响。我们表明,这些修改在所考虑的所有案例中都不断改进了健全的事件分类。我们还从经验上表明,拟议的组合方法提高了网络的变换,使其在输入光谱中的时间/频率变换更加稳健。通过增加微不足道的可训练参数来实现这一点,使这些方法成为常规汇层的诱人替代方法。结果就是FSD50K分类基准0.541的新的最新工艺型 mAP。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
153+阅读 · 2020年5月26日
专知会员服务
59+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员