Text embedding models play a cornerstone role in AI applications, such as retrieval-augmented generation (RAG). While general-purpose text embedding models demonstrate strong performance on generic retrieval benchmarks, their effectiveness diminishes when applied to private datasets (e.g., company-specific proprietary data), which often contain specialized terminology and lingo. In this work, we introduce BMEmbed, a novel method for adapting general-purpose text embedding models to private datasets. By leveraging the well-established keyword-based retrieval technique (BM25), we construct supervisory signals from the ranking of keyword-based retrieval results to facilitate model adaptation. We evaluate BMEmbed across a range of domains, datasets, and models, showing consistent improvements in retrieval performance. Moreover, we provide empirical insights into how BM25-based signals contribute to improving embeddings by fostering alignment and uniformity, highlighting the value of this approach in adapting models to domain-specific data. We release the source code available at https://github.com/BaileyWei/BMEmbed for the research community.


翻译:文本嵌入模型在检索增强生成(RAG)等人工智能应用中发挥着基石作用。尽管通用文本嵌入模型在通用检索基准上表现出色,但当应用于私有数据集(例如公司特有的专有数据)时,其效果往往会下降,因为这些数据通常包含专业术语和特定行话。本文提出了一种新颖的方法——BMEmbed,用于将通用文本嵌入模型适配到私有数据集。该方法通过利用成熟的关键词检索技术(BM25),基于关键词检索结果的排序构建监督信号,以促进模型适配。我们在多个领域、数据集和模型上评估了BMEmbed,结果显示其在检索性能上取得了持续提升。此外,我们通过实证分析揭示了基于BM25的信号如何通过促进对齐性和一致性来改进嵌入表示,从而凸显了该方法在使模型适应特定领域数据方面的价值。我们已向研究社区开源代码,地址为 https://github.com/BaileyWei/BMEmbed。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员