In this paper the problem of scheduling of jobs on parallel machines under incompatibility relation is considered. In this model a binary relation between jobs is given and no two jobs that are in the relation can be scheduled on the same machine. In particular, we consider job scheduling under incompatibility relation forming bipartite graphs, under makespan optimality criterion, on uniform and unrelated machines. We show that no algorithm can achieve a good approximation ratio for uniform machines, even for a case of unit time jobs, under $P \neq NP$. We also provide an approximation algorithm that achieves the best possible approximation ratio, even for the case of jobs of arbitrary lengths $p_j$, under the same assumption. Precisely, we present an $O(n^{1/2-\epsilon})$ inapproximability bound, for any $\epsilon > 0$; and $\sqrt{p_{sum}}$-approximation algorithm, respectively. To enrich the analysis, bipartite graphs generated randomly according to Gilbert's model $\mathcal{G}_{n,n,p(n)}$ are considered. For a broad class of $p(n)$ functions we show that there exists an algorithm producing a schedule with makespan almost surely at most twice the optimum. Due to our knowledge, this is the first study of randomly generated graphs in the context of scheduling in the considered model. For unrelated machines, an FPTAS for $R2|G = bipartite|C_{\max}$ is provided. We also show that there is no algorithm of approximation ratio $O(n^bp_{\max}^{1-\epsilon})$, even for $Rm|G = bipartite|C_{max}$ for $m \ge 3$ and any $\epsilon > 0$, $b > 0$, unless $P = NP$.
翻译:在本文中, 在不兼容关系下, 将工作安排在平行机器上的问题会得到考虑 。 在这个模型中, 给出了工作之间的二进制关系, 在同一机器中, 无法安排两个属于关系的工作。 特别是, 我们考虑在不兼容关系下, 以双叶图的形式安排工作时间安排, 以月度最佳标准为基础, 在制服和不相关的机器上。 我们显示, 即使在单位时间工作的情况下, 在 $P\ neq NP$ 的算法下, 也不可能实现一个好的近似比率 。 我们还提供一种近似算算法, 即使是在Gilbert 模型 $PTal_ $, 美元= j 美元。 美元= 美元= 美元= 欧元= 美元; 美元= 美元= 美元= 美元= 美元; 美元= = 美元= 美元= 美元 美元= 美元 。 为了丰富分析, 以随机方式生成的双部图表, 也提供一种我们所研究的 $=xxx 。