The positive definiteness of discrete time-fractional derivatives is fundamental to the numerical stability (in the energy sense) for time-fractional phase-field models. A novel technique is proposed to estimate the minimum eigenvalue of discrete convolution kernels generated by the nonuniform L1, half-grid based L1 and time-averaged L1 formulas of the fractional Caputo's derivative. The main discrete tools are the discrete orthogonal convolution kernels and discrete complementary convolution kernels. Certain variational energy dissipation laws at discrete levels of the variable-step L1-type methods are then established for time-fractional Cahn-Hilliard model.They are shown to be asymptotically compatible, in the fractional order limit $\alpha\rightarrow1$, with the associated energy dissipation law for the classical Cahn-Hilliard equation. Numerical examples together with an adaptive time-stepping procedure are provided to demonstrate the effectiveness of the proposed methods.
翻译:离散时间折射衍生物的确定性对于时间折射阶段模型的数值稳定性(能源意义)至关重要。提出了一种新颖的技术来估计非统一的L1、半电网基L1和分式卡普托衍生物的时平均L1公式产生的离散共振动内核最小值。主要的离散工具是离散或分解的内核和离散的互为补充的内核。然后为时间折射式L1型模型的离散一级制定某些变异性能量消散法。在分序限制 $\alpha\rightrow1 中,它们与相关的Cahn-Hillard古典方程式的能量消散法基本相容。提供了带有适应性时间跨动程序的Numicicic实例,以证明拟议方法的有效性。