Orthonormality is the foundation of matrix decomposition. For example, Singular Value Decomposition (SVD) implements the compression by factoring a matrix with orthonormal parts and is pervasively utilized in various fields. Orthonormality, however, inherently includes constraints that would induce redundant degrees of freedom, preventing SVD from deeper compression and even making it frustrated as the data fidelity is strictly required. In this paper, we theoretically prove that these redundancies resulted by orthonormality can be completely eliminated in a lossless manner. An enhanced version of SVD, namely E-SVD, is accordingly established to losslessly and quickly release constraints and recover the orthonormal parts in SVD by avoiding multiple matrix multiplications. According to the theory, advantages of E-SVD over SVD become increasingly evident with the rising requirement of data fidelity. In particular, E-SVD will reduce 25% storage units as SVD reaches its limitation and fails to compress data. Empirical evidences from typical scenarios of remote sensing and Internet of things further justify our theory and consistently demonstrate the superiority of E-SVD in compression. The presented theory sheds insightful lights on the constraint solution in orthonormal matrices and E-SVD, guaranteed by which will profoundly enhance the SVD-based compression in the context of explosive growth in both data acquisition and fidelity levels.


翻译:超常性是矩阵分解的基础。 例如, 单值分解( SVD) 通过对带有正异性部分的矩阵进行保理来进行压缩, 并在多个领域广泛使用。 但是, 超常性本身包含一些限制, 导致自由的冗余程度, 防止SVD更深的压缩, 甚至随着数据忠实性的要求的严格要求而使其更加沮丧。 在本文件中, 我们理论上证明, 这些由异常性造成的重复性可以无损地完全消除。 因此, SVD的强化版本, 即E- SVD, 被建立为无损和快速释放限制, 并通过避免多倍增矩阵恢复SVD的异常部分。 根据理论, E-SVD的优势随着数据忠实性要求的不断提高,越来越明显地显现。 特别是, E-SVD 将减少25%的储存单位,因为SVD 达到其局限性, 无法压缩数据。 从遥感和互联网的典型环境环境背景情景中获取证据性证据, 将进一步证明在S orimal-D oralimalalalal-S ortial- ortial- deminal- delistral- deglistral- degresmal 中进一步证明我们的理论和S 的理论和S 的高度的理论和S 的高度的高度的高度的理论和S 的高度的理论和S 将进一步证明。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
【WWW2021】对众包系统的数据中毒攻击和防御
专知会员服务
20+阅读 · 2021年2月22日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Improved Compression of the Okamura-Seymour Metric
Arxiv
0+阅读 · 2022年2月10日
Arxiv
5+阅读 · 2021年9月30日
Compression of Deep Learning Models for Text: A Survey
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员