A high-order accurate quadrature rule for the discretization of boundary integral equations (BIEs) on closed smooth contours in the plane is introduced. This quadrature can be viewed as a hybrid of the spectral quadrature of Kress (1991) and the locally corrected trapezoidal quadrature of Kapur and Rokhlin (1997). The new technique combines the strengths of both methods, and attains high-order convergence, numerical stability, ease of implementation, and compatibility with the "fast" algorithms (such as the Fast Multipole Method or Fast Direct Solvers). Important connections between the punctured trapezoidal rule and the Riemann zeta function are introduced, which enable a complete convergence analysis and lead to remarkably simple procedures for constructing the quadrature corrections. The paper reports a detailed comparison between the new method and the methods of Kress, of Kapur and Rokhlin, and of Alpert (1999).
翻译:在飞机封闭的平滑轮廓上,对封闭式平滑轮廓的边界整体方程式(BIEs)的离散采用高度准确的二次曲线规则,这种二次曲线可被视为Kress(1991年)光谱象形体和Kapur和Rokhlin(1997年)当地纠正的孔化梯子象形的混合体。新的技术结合了这两种方法的长处,并实现了高度的趋同、数字稳定性、执行的便利和与“快”算法(如快速多极法或快速直接解答器)的兼容性。引入了刺穿的捕捉摸死规则与Riemann zeta 函数之间的重要联系,从而能够进行完全的趋同分析,并导致形成建造象形体矫正的简单程序。文件报告了新方法与Kress、Kapur和Rokhlin以及Alpert(1999年)方法之间的详细比较。